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Abstract

Precise deposition of nanofibers is still an important issue in the applications of electrospinning (e-spinning), especially
in rapid hemostasis of organs such as the liver, lung, and kidney. In this study, we propose an electric field-modified e-
spinning technique with a metal cone attached to the spinning nozzle to realize controllable precise deposition of fibers.
The deposition range of the e-spun fibers is tunable by changing the size of the metal cone, and the mechanism
is attributed the focused electric field verified by theoretical simulations. This electric field-modified e-spinning method
was further used to in situ precisely deposit medical glue N-octyl-2-cyanoacrylate (NOCA) fibers onto the resection site
of rat liver to realize rapid hemostasis within 10 s. Postoperative pathological results indicate that less inflammatory
response and tissue adhesion are observed in this electric field-modified e-spinning group compared with that of
traditional airflow-assisted group. This technique combined with our designed handheld e-spinning device could be
used in emergency medical treatment, clinics, field survival, and home care for its portability and precise deposition
characteristics.
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Background
Liver resection is an effective way to treat cancers in the
liver [1]. However, heavy bleeding usually occurs in liver
resection due to the abundant blood vessel in this special
site [2]. Failure to stop bleeding timely can lead to ser-
ious organ failure which could even threaten the human
life [3]. Current methods to stop bleeding are mostly fo-
cused on mechanical methods like suture and ligation,
thermal methods like electrocautery [4], and using
hemostatic method agents like fibrin sealants [5, 6], gel-
atin matrix [7], and chitosan hydrogel adhesive [8]. Of
course, all of them have obvious advantages and limita-
tions. For example, suture is the most effective way to
stop bleeding, but it needs a timely and meticulous
process; otherwise, it causes long-term ischemia [9].
Similarly, thermal methods can damage the local tissues

and may make it abnormal from normal tissue which
cannot be distinguished easily [10]. Moreover, fibrin
sealants widely used for hemostasis can easily lead to
adverse human immune response, and they also have
disadvantages such as short shelf life, vulnerable to
microbial intrusion, and high price [11]. In contrast,
e-spinning technology shows excellent potential in
hemostasis for its special features such as using less
dosage and coating on wound sites even with irregular
surfaces [12, 13]. However, the existing e-spinning tech-
niques and devices for hemostasis still have several prob-
lems to overcome: (1) volume and weight are so bulky
that they cannot be easily carried around, (2) inaccurate
deposition of fibers [14] takes a longer time to realize
the same hemostasis effect and may also cause tissue
adhesion after operation, and (3) they depend on the
urban electricity supply, so they are not suitable for us-
ages in outdoor and remote areas without power supply
[15]. Although our group recently reported an airflow-
assisted e-spinning technique which utilizes an air-pump
blower to enable orientated deposition of fibers [12], it
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needs additional power supply for the air pump. There-
fore, a portable e-spinning technique and device that do
not rely on mainly electricity but can also achieve orien-
tated deposition of fibers for rapid hemostasis are highly
desired.
A metal plate placed in the electrostatic field will gen-

erate inductive charges on its surface due to the electro-
static interaction, which can induce a new electric field
and thus change original electrostatic field distributions
[16–18]. On the other hand, the e-spinning process uti-
lizes the unstable whipping and splitting of charged jets
during electrostatic field to achieve micro-/nanofibers
and ultimately deposit on a grounded collector [19, 20].
The charged jet is sensitive to the distribution of electro-
static field, so thinner fibers are usually achieved by
changing the voltage [21, 22]. Therefore, based on this
principle described above, we can introduce a metal
plate in the e-spinning process to produce more orien-
tated deposition by decreasing the divergence angle of
the flying jet via changing the distribution of the electro-
static field. In addition, we take clinically used cyano-
acrylate (CA) medical glue [23] as a hemostasis drug
[24], because a large dosage is usually required in clinics
to form a thick film for hemostasis. However, this film is
rigid for the large thickness of the CA medical glue. On
the contrary, polymer fiber membranes generated by
e-spinning methods are often flexible and compact
enough [25]. Therefore, it is of great significance to use
electrostatic field-modified methods for e-spinning CA
medical glue with precise deposition on the liver for
rapid hemostasis.
In this study, we propose an electric field-modified

e-spinning technique to realize controllable precise
deposition of medical glue fibers on the liver resection
site. The deposition range of the e-spun fibers is tunable
by changing the size of the metal cone. This electric
field-modified e-spinning method was further used to in
situ precisely deposit medical glue N-octyl-2-cyanoacrylate
(NOCA) fibers onto the resection site of rat liver to
realize rapid hemostasis within 10 s. Postoperative
pathological results indicate that less inflammatory
response and tissue adhesion are observed in this elec-
tric field-modified e-spinning group compared with
those in the traditional airflow-assisted group. This tech-
nique combined with our designed handheld e-spinning de-
vice could be used in emergency medical treatment, clinics,
field survival, and home care for its portability and precise
deposition characteristics.

Methods
Materials
Rapid medical adhesive α-cyanoacrylate (CA) which is
composed of N-octyl-2-cyanoacrylate and medical grade
polymethyl methacrylate (PMMA, an additive to increase

viscosity) was provided by Guangzhou Baiyun Medical
Adhesive Co., Ltd. and used without further purification.
Chloral hydrate was purchased from Aladdin, which was
diluted into 10% for further anesthesia.

In Vivo Hemostatic Experiments
The hemostasis experiments after rat liver resection were
operated on 40 adult male SD rats weighing 300~350 g.
These rats were randomly divided into two groups for in
situ airflow-assisted (n = 20) and electric field-modified
e-spinning (n = 20) treatment. Every rat accepted 0.7 ml
10% chloral hydrate before the operation, then a laparot-
omy, lobe free, and a 50% liver resection, followed by in situ
electric field-modified (electrode side length of 2.5 cm, elec-
trode angle of 60°, e-spinning distance of 10 cm, voltage of
10 kV) or airflow-assisted (outlet diameter of 1.2 mm, volt-
age of 10 kV, flow rate of 120 μl min−1, and e-spinning
distance of 10 cm) e-spinning NOCA fibers. The whole
process occupied about 20 min for each rat. All operating
procedures complied with the National College of Animal
Experiments Regulations and University Animal Research
Committee management regulations.

Blood Test and Pathological Sectioning
Blood samples were collected by heart puncture on
the third and fifth days after operation for white blood
cell (WBC) count detection and liver function tests.
The rats were euthanized and the lobe was excised on
the seventh day after operation, in which the lobe was
further fixed in the 4% neutral formalin solution, em-
bedded in paraffin and stained with hematoxylin and
eosin (HE).

Electric Field Simulation
Finite element analysis method was used to simulate the
electric field distribution. The geometrical model con-
sists of a power supply of 12 kV, a copper needle at-
tached with a copper cone, and an aluminum collecting
plate in air. The parameters of needle length, cone diam-
eter, and receiving distance were set as 3, 5, and 10 cm,
respectively.

Characterization
SEM imaging was carried out on a Hitachi TM-1000
scanning electron microscope. The Fourier transform in-
frared (FTIR) spectrum was measured on a Nicolet In10
spectrometer to analyze the fibers’ intermolecular struc-
ture. An optical microscope (Olympus BX51) was used
to find the deposition boundary and evaluate the depos-
ition area. Casio Exilim camera was used to record the
in vivo liver resection process.
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Results and Discussion
Electric Field-Modified E-spinning for Precise Deposition
Figure 1 and Additional file 1: Figure S1 display our
homemade handheld e-spinning device equipped with the
electric field-modified e-spinning technique. It uses two
mercury-free alkaline AAA batteries (diameter 10 mm,
height 44 mm; LR03, Fujian Nanping, Nanfu Battery,
China) as power supply with a high-voltage converter and
gets rid of the limitation of urban electricity supply that
greatly develops the portable use in outdoors. Importantly,
significantly different from our recent reported e-spinning
device [11], a metallic cone with tunable size is equipped at
the spinning needle. The introduction of the metallic cone
would change original electromagnetic field distributions
and affect the e-spinning process. It should be noticed that
the safety issues such as electric shock are usually caused
by a high current rather than a high voltage. In this study,
the handheld device has a converter which is used to keep
a high voltage and a low current to ensure safety.
Figure 2a shows the SEM image of NOCA fibers from

medical glue. The diameter of the NOCA fibers is about
1~3 μm, and these fibers exhibit a continuous fiber
morphology. Figure 2b shows the FTIR spectrum of these
NOCA fibers. Peaks at 714 cm−1, 2761 cm−1, and
1732 cm−1 correspond to the vibration of –CH2–, –C≡N,
and –C=O, respectively. The peak at 3127 cm−1 corre-
sponding to =CH– almost disappears, which is caused by

the polymerization process during the e-spinning process
that most of alkenyl C=C bonds in monomer molecules are
transformed to polymer chains. Furthermore, we investigate
the relationship between the size of metallic cone and ori-
entated deposition. As shown in Fig. 2c, the diameter of the
deposition area decreases with the decreasing of metallic
cone size when the distance between the needle tip and the
collector was fixed on 10 cm. This phenomenon is probably
due to that the electrostatic field would be constrained at a
narrower range [26, 27] with decreasing of the metallic
cone size, and thus, the whipping process in e-spinning
would be more restricted leading to a smaller deposition
area. Moreover, the relationship between e-spinning
distance and deposition area was also studied (Fig. 2d).
Additional file 1: Table S1 presents the deposition
width of three different e-spinning methods with in-
creasing e-spinning distance. The concrete deposition
found that the deposition area increases with the in-
crease of the e-spinning distance, which is consistent
with traditional e-spinning results. However, compared
with traditional e-spinning, our electric field-modified
e-spinning with a metallic cone brings about a smaller
deposition area, namely better orientated deposition.
Even compared with our recently reported airflow-assisted
e-spinning, this electric field-modified e-spinning exhibits
a better orientated deposition. As shown in Fig. 2c, d, tun-
ing e-spinning distance and the side length of the metal

Fig. 1 Schematic diagram of the electric field-modified e-spinning NOCA fibers for liver resection hemostasis
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cone can focus the electric field and bring about a stron-
ger convergence force. Although some closer part, like the
skin or muscle of the abdomen, may produce a force to
attract the flying jet, we can tune these two parameters to
generate stronger convergence force which can reduce
this negative effect from the attraction force. In addition,
airflow-assisted e-spinning requires an additional power
supply to the air pump, and this field-modified e-spinning
can get rid of it, bringing about more convenience.

Mechanism Analysis of Precise Deposition
To understand the reason why this e-spinning device
equipped with a metal cone could bring about a smaller
deposition area, their electric field simulations were fur-
ther conducted. Figure 3 shows the electric field distri-
bution of e-spinning models equipped with and without
a metal cone. The red arrow represents the electric field
line, whose direction and length stand for the orientation

and strength of electric field at this point, respectively.
Traditional e-spinning is the one without a metal cone
(Fig. 3a), and our electric field-modified e-spinning is the
one with a metal cone (Fig. 3b). As shown in Fig. 3, the
electric potential (color bar) is significantly decreased
along the direction from the needle to the collecting plate,
and thus, positive-charged fibers can be assembled on the
collecting plate. More interestingly, comparing Fig. 3a
with b, stronger electric field strength and smaller diver-
gence angle of electric field direction were observed in
Fig. 3b, and these phenomena are more obvious when
they are near the metal cone. Its effect on changing the
electric field acts like the convergence effect on the light
by a convex lens. The electric field lines are convergent, so
that it brings about a smaller divergence angle of electric
field direction. Moreover, the electric field intensity at the
same position also becomes larger due to this convergence
and the superposition principle of electric field. The inset is

Fig. 2 a The SEM image and b FTIR spectrum of NOCA fibers obtained by the electric-field assisted e-spinning device. The size of deposition area
as a function of c metallic cone diameter and d e-spinning distance
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the representative electric field line selected from the same
area with magnification. The field strength is 4 × 105 V/m
in Fig. 3b inset, which is larger than 3 × 105 V/m in Fig. 3a
inset, indicating the larger electric field strength occurs in
space after adding a metal cone. And the divergence angle
of electric field direction is 6° in Fig. 3b inset, which is
smaller than 20° in Fig. 3a inset. These results imply
that this electric field-modified e-spinning equipped
with a metal cone bringing about a smaller deposition
area can be attributed to stronger electric field strength
and smaller divergence angle, which constrict the positive-
charged fibers flying in a narrower space thereby confining
their deposition to a smaller area.

In Vivo Rapid Hemostasis and Analysis
Figure 4a–c shows the main process of hemostasis in rat
hepatic resection. A rapid and effective hemostasis was
achieved within 10 s by NOCA fibers using this electric
field-modified e-spinning technique, which is more quick
than that of airflow-assisted e-spinning. This phenomenon
can be attributed to the better orientated deposition of
electric field-modified e-spinning than airflow-assisted
e-spinning verified in Fig. 2d, which means the same
amount of medical glue can be more accurately deposited
on the wound site during the same e-spinning time. In
fact, NOCA medical glue used in clinics usually takes a
spraying way [28–30], while the deposition area is rela-
tively large leading to some serious tissue adhesions,
which makes it difficult to perform postoperative opera-
tions such as removal of sutures and even cause secondary
damage. Better orientated deposition not only enables
faster hemostasis, but also can avoid tissue adhesion.
Figure 4d shows the cross-sectional SEM image of NOCA
fibers that deposited on the liver surface for hemostasis. It
shows that NOCA fibers are tightly adhered to the surface
of the liver section and formed a compact fiber membrane
whose thickness is about 50 μm with the e-spinning time
of 10 s. During this short e-spinning time of 10 s, the

distance change caused by the hand shake that usually
comes from the fatigue is tiny, usually no more than 1 cm,
and thus, the variation of the deposition range is small.
More interestingly, the surface of the liver section is not
smooth but irregular in shape (Fig. 4c), while NOCA
fibers could deposit onto this irregular surface with a good
uniform thickness (Fig. 4d), implying that this electric
field-modified e-spinning technique possesses unique ad-
vantages in rapid hemostasis even on some irregular sur-
faces of organs.
The WBC count test (Fig. 5a) was used to evaluate post-

operative infections caused by hepatectomy and hemostasis
in rats. Five days after surgery, the number of WBC
(P < 0.05) in the electric field-modified e-spinning
group was significantly lower than that of the conven-
tional spraying group and the airflow-assisted group
(P < 0.01). Moreover, it was close to the sham-operated
group (control group), which indicates that the acute
inflammation after 5 days in the electric field-modified
e-spinning group subsided to a normal state. On the
contrary, rats in the spraying group and the airflow-
assisted group show serious inflammatory response
and slower regression.
Liver function was evaluated by the concentration of the

serum ALT (Fig. 5b), AST (Fig. 5c), and GGT (Fig. 5d).
Herein, ALT and AST concentration can sensitively reflect
the extent of liver cell damage. High concentrations of
GGT can reflect hepatitis, obstructive jaundice, bile stasis,
and other symptoms. As shown in Fig. 5b–d, the liver func-
tion enzyme levels in electric field-modified e-spinning
group after 5 days of operation were basically close to those
in the sham group (control group) and were significantly
lower than those in the conventional spraying group and
the airflow-assisted group, indicating that the physiological
state of the rats in the electric field-modified e-spinning
group and the sham group was similar. However, GGT in
the spraying group and airflow-assisted group still remained
a high level on the fifth day after operation (P < 0.001),

Fig. 3 Electric field distribution of e-spinning models equipped a without and b with a metal cone. Insets are enlarged images of the same area
and show the angle between the field line and the vertical direction
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Fig. 5 Blood test. a WBC count. b–d Liver function enzyme test. b Alanine aminotransferase (ALT). c Aspartate aminotransferase (AST).
d Glutamyltransaminase (GGT)

Fig. 4 Hemostasis in a rat liver resection model through in situ electric-field assisted e-spinning. a The liver was dissociated and the liver lobe
was exposed. b The lobe was free and fixed with a surgical suture to temporarily block the hepatic blood flow. c A hepatectomy was made and
NOCA medical glue fibers were deposited on the wound site with our electric-field assisted e-spinning device. d Cross-sectional SEM image of
NOCA medical glue fibers deposited on the liver surface for hemostasis
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indicating that there are some serious problems such as bile
stasis and liver damage.
The pathological biopsy on liver tissues after hemostasis

was further conducted. Figure 6a and c are liver patho-
logical sections after hemostasis with airflow-assisted and
electric field-modified e-spinning, respectively, and Fig. 6b
and d are their enlarged images. Compared with airflow-
assisted e-spinning group, the liver tissue boundaries in the
electric field-modified e-spinning group is relatively clearer
and has a thinner capsule. These results indicate that the
regeneration ability in the liver is better in the electric
field-modified group. Moreover, less inflammatory cells
were observed in the capsule, indicating that the NOCA
fibrous membranes fabricated by the electric field-modified
method can bring about less inflammatory response. These
results can be attributed to the fact that electric field-modi-
fied methods have better orientated deposition than airflo-
w-assisted methods, thus reducing the amount of the
NOCA medical glue used for achieving the same
hemostatic effect, which will reduce the tissue adhesion
and thereby inflammatory response. In addition, it also
can be seen from Fig. 6a, b that medical glue was sepa-
rated from the liver tissue, which may be caused by the
air blow, indicating the adhesion between them using
airflow-assisted e-spinning is not as strong as the elec-
tric field-modified e-spinning.

Conclusions
In summary, we propose an electric field-modified
e-spinning technique with a metal cone attached to
the spinning nozzle to realize controllable precise

deposition of fibers. The deposition range of the e-spun
fibers is tunable by changing the size of the metal cone, and
the mechanism is attributed to the focused electric field
verified by theoretical simulations. This electric field-modi-
fied e-spinning method was further used to in situ precisely
deposit medical glue NOCA fibers onto the resection site
of rat liver to realize rapid hemostasis within 10 s. Postoper-
ative pathological results indicate that less inflammatory
response and tissue adhesion are observed in this electric
field-modified e-spinning group compared with that in the
traditional airflow-assisted group. This technique combined
with our designed handheld e-spinning device could be
used in emergency medical treatment, clinics, field survival,
and home care for its portability and precise deposition
characteristics.

Additional File

Additional file 1: Figure S1. The photograph of our homemade
portable handheld e-spinning device equipped with the electric field-
modified technique that a metal cone is added to the spinning nozzle.
Table S1. Deposition widths of various e-spinning methods at different
e-spinning distances. (DOC 64 kb)
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